STEROWANIE MASZYN I URZĄDZEŃ I

Laboratorium

1. Wprowadzenie

Opracował: dr hab. inż. Cezary Orlikowski

Instytut Politechniczny

Ogólny schemat stanowiska laboratoryjnego ze sterownikiem programowalnym przedstawiono na rys. 1, gdzie:

PLC - sterownik programowalny (GE VersaMax Micro),

JP – jednostka podstawowa,

MR – moduł rozszerzający;

PC – komputer (programator).

Komputer wyposażony jest w program narzędziowy *Cimplicity* do programowania sterowników (tworzenia programów sterujących) przy pomocy schematów drabinkowych.

STEROWNIK PROGRAMOWALNY

Sterownik programowalny jest urządzeniem, w którym mikroprocesor na podstawie programu zapisanego w pamięci steruje przebiegiem procesu technologicznego. Ogólny schemat funkcjonalny sterownika pokazano na rys.2. Sterownik odczytuje sygnały wejściowe pochodzące z czujników i przetworników pomiarowych, następnie wykonuje obliczenia zgodnie z programem sterującym, a potem na podstawie wyników ustawia sygnały wyjściowe sterując urządzeniami wykonawczymi. Odczyt wejść, obliczenia i ustawianie wyjść są powtarzane stale z okresem zwanym cyklem sterownika – rys. 3. Wejścia binarne pochodzą z przekaźników, czujników stykowych, wyłączników krańcowych, przycisków ręcznych itd. Wyjścia binarne za pośrednictwem przekaźników i styczników włączają silniki, zawory, grzejniki, elementy sygnalizacyjne itp.

Jednostka centralna steruje wymianą informacji z urządzeniami zewnętrznymi i z pamięcią oraz wykonuje kolejne kroki programu zapisane w pamięci. Pamięć w sterowniku, podobnie jak w każdym komputerze, służy do zapamiętania programu, który ma być wykonywany oraz do przechowywania informacji pośrednich powstających w trakcie wykonywania programu.

Do programowania sterowników najczęściej służą specjalne programatory lub komputery z odpowiednim oprogramowaniem (narzędziowym), połączone ze sterownikiem.

Dane sterownika w laboratorium:

wejścia logiczne:

- liczba: 16 (*JP*) i 8 (*MR*)

- poziom sygnału: 0V÷24V ("0"= 0V÷5V; "1"=11,5V÷24V)

wyjścia logiczne:

- liczba: 8 (JP) i 4 (MR)

- poziom sygnału maksymalny: 5V÷24V.

Na rys. 4 pokazano sposób podłączenia wejść i wyjść logicznych, gdzie: S – element zadający sygnał wejściowy, P – element wyjściowy, K – przekaźnik.

PROGRAM NARZĘDZIOWY CIMPLICITY

Sterowniki *GE FANUC* mogą być programowane przy pomocy programu *CIMPLICITY*. Program ten bazuje na metodzie schematów stykowo – przekaźnikowych nazywanych także schematami drabinkowymi. Po zbudowaniu schematu regulatora przy pomocy programu należy zbudowany schemat przesłać, do sterownika, który po uruchomieniu będzie działał (przetwarzał sygnały wejściowe na wyjściowe) zgodnie z tym schematem.

Ogólnie, układ stykowo – przekaźnikowy składa się z dwóch podstawowych rodzajów elementów: styków (elementów wejściowych) i przekaźników (elementów wyjściowych). W programie *CIMPLICITY* funkcje logiczne realizowane przez sterownik przedstawiane są właśnie w taki właśnie sposób. Programowanie sterownika polega zatem na ustawieniu na ekranie komputera konfiguracji styków i przekaźników odpowiadającej funkcjom logicznym, które mają być realizowane przez sterownik. Stosowane w programie *CIMPLICITY* symbole graficzne styków i przekaźników zostały pokazane na rys. 5.

Styki i przekaźniki nie są jedynymi elementami dostępnymi podczas programowania sterownika. Oprócz nich są także takie elementy (bloki funkcyjne – rys. 5) jak: przekaźniki czasowe, liczniki i inne.

Podstawową strukturą programu jest jednak schemat drabinkowy i dlatego wszystkie inne (oprócz styków i przekaźników) elementy są także w taki schemat włączane. Bloki funkcyjne przedstawione są jako duże prostokąty. Schemat drabinkowy posiada symboliczne źródło zasilania – zakłada się przepływ sygnału od "szyny zasilającej" umieszczonej po lewej stronie schematu, poprzez połączenia, do przekaźnika lub bloku funkcyjnego umieszczonego po prawej stronie. Cały program składa się ze "szczebli" drabiny. Szczebel drabiny logicznej musi posiadać odpowiedni format oraz składnię, Najważniejsze zasady tworzenia struktury drabiny logicznej są następujące:

- ostatnim elementem szeregowego połączenia elementów szczebla programu musi być przekaźnik lub blok funkcyjny
- jeśli w szczeblu jest przekaźnik uaktywniany zboczem sygnału sterującego to musi być on jedynym przekaźnikiem w tym szczeblu
- szczebel musi zawierać przynajmniej jeden styk przed przekaźnikiem, blokiem funkcyjnym lub połączeniem pionowym
- po bloku funkcyjnym w szczeblu nie mogą wystąpić żadne styki

Próba nieprawidłowego komponowania szczebla jest sygnalizowana przez program. Na rys. 6 pokazano przykładowy, prawidłowy, rozgałęziony szczebel drabiny logicznej, w którym występuje 3 styki, 2 przekaźniki i jeden blok funkcyjny.

Zmienne programu sterującego

Podczas budowania drabiny logicznej programu sterującego elementom logicznym użytkownik (programista) przypisuje zmienne. Oprogramowanie CIM-PLICITY posiada dwa typy zmiennych: zmienne dyskretne (jednobitowe – mogące przyjmować wartość logiczną 0 lub 1), oraz zmienne rejestrowe, które służą do przechowywania danych innych niż pojedyncze bity. Elementom takim jak przekaźniki i styki przypisuje się zmienne dyskretne, pozostałe elementy wymagają przypisania kilku zmiennych, często różnego typu, jako parametrów. W tabl. 1 – 3 dokonano skrótowego zestawienia wybranych typów zmiennych i ich symboli.

Tablica

Tablica

Zmienne dyskretne

1	
Тур	Opis
%1	Zmienna reprezentująca fizyczne wejście dyskretne. Po symbolu
	następuje adres zmiennej w tablicy stanu wejść (np. %/00121).
% Q	Zmienna reprezentująca fizyczne wyjście dyskretne. Po symbolu
	następuje adres zmiennej w tablicy stanu wyjść (np. %Q00121).
% <i>M</i>	Symbol reprezentujący wewnętrzną zmienną dyskretną programu
	sterującego. Zmienna typu %M może posiadać pamięć stanu, jeśli
	przypisana jest przekaźnikowi z pamięcią. (po wyłączeniu ste-
	rownika i jego ponownym włączeniu wartość tej zmiennej jest jest
	taka jak przed wyłączeniem zasilania). W przypadku przypisania
	przekaźnikowi bez pamięci zmienna nie posiada pamięci stanu.
% T	Symbol reprezentujący chwilową zmienną dyskretną, bez możli-
	wości wykorzystania pamięci stanu

Zmienne rejestrowe

2	
Тур	Opis
%R	Zmienna 16-bitowa, oznaczająca rejestr, w którym można prze- chowywać dane programu sterującego (np. wyniki obliczeń). Symbolowi powinien towarzyszyć adres rejestru (np. % <i>R</i> 00201).

Zmienne systemowe 3

5		
Zmien-	Nazwa	Definicja
na	pomocnicza	
%S0001	FST_SCN	Ustawiana jest wartość 1 jeżeli bieżący cykl jest
		pierwszym cyklem pracy sterownika
%S0002	LST_SCN	Ustawiana jest wartość 1 jeżeli bieżący cykl jest
		ostatnim cyklem pracy sterownika
%S0003	T_10MS	Podstawa czasu generatora sygnału prostokąt-
		nego: 0.01 s.
%S0004	T_100MS	Podstawa czasu generatora sygnału prostokąt-
		nego: 0.1 s.
%S0005	T_SEC	Podstawa czasu generatora sygnału prostokąt-
		nego: 1 s.
%S0006	T_MIN	Podstawa czasu generatora sygnału prostokąt-
		nego: 1 min.
%S0007	ALW_ON	Styk zwarty na stałe.
%S0008	ALW_OFF	Styk otwarty na stałe.

Przy pomocy zmiennych opisanych w tabl. 1 –3, można określać w programie sterującym różne typy danych przedstawione w tabl. 4.

Tablica

Typy danych

Tablica 4

Тур	Nazwa	Opis
INT	Signed Integer - licz-	Liczby całkowite ze znakiem zajmują 16
	by całkowite ze zna-	bitów pamięci i są zapisywane w formie
	kiem	dopełnienia do dwóch dla liczb ujemnych.
		Zakres: od -32768 do +32767
DINT	Double Precision Si-	Liczby całkowite podwójnej precyzji ze
	gned Integer – liczby	znakiem są przechowywane w 32 bitach
	całkowite podwójnej	pamięci i są zapisywane w formie dopeł-
	precyzji ze znakiem	nienia do dwóch dla liczb ujemnych.
		Zakres: od -2147483648 do +2147483647
BIT	Bit	Dana zajmująca najmniejszą komórkę
		pamięci, mogąca przyjmować wartość 0
		lub 1. Słowo bitowe może mieć długość N.
BYTE	Byte – bajt	Dana zawierająca 8 bitów
WORD	Word – słowo	Słowo – wykorzystuje 16 kolejnych bitów
		pamięci sterownika, ale, w przeciwień-
		stwie do ciągu bitów reprezentującego w
		pamięci sterownika liczbę, bity mogą być
		niezależne od siebie. Każdy bit posiada
		swój własny stan logiczny: 0 lub 1.

<u>Zestaw instrukcji</u>

Program narzędziowy *CIMPLICITY* udostępnia szeroki zestaw instrukcji (elementów) do tworzenia programów sterujących. Celem przybliżenia możliwości programowania sterowników poniżej zestawiono wybrane elementy zestawu instrukcji. Bardziej szczegółowo będą one omówione w kolejnych ćwiczeniachach. Tablica 5 zawiera wybrane grupy elementów, a tablice 6 –10 wybrane elementy w poszczególnych grupach.

Wybrane grupy elementów programu		Tablica 5
Grupa funkcji	Opis	
BIT OPERATIONS	Bloki działań na ciągach bitów	
COILS	Przekaźniki	
CONTACTS	Styki	
COUNTERS	Liczniki	
TIMERS	Przekaźniki czasowe	

Bloki działań na ciągach bitów

Symbol	Opis funkcji
AND	Operacja logiczna AND na dwóch ciągach bitów
OR	Operacja logiczna OR na dwóch ciągach bitów
XOR	Operacja logiczna XOR na dwóch ciągach bitów
NOT	Operacja logiczna NOT na ciągu bitów
SHL	Przesunięcie ciągu bitów w lewo
SHR	Przesunięcie ciągu bitów w prawo
ROL	Przesunięcie ciągu bitów w lewo w obiegu zamkniętym
ROR	Przesunięcie ciągu bitów w prawo w obiegu zamknię-
	tym
BIT-	Przesuwanie "1" w obiegu zamkniętym
SEQ	

Przekaźniki

Tablica 7

Symbol	Opis funkcji
-()-	Przekaźnik o stykach otwartych, zwieranych w mo- mencie dotarcia sygnału do przekaźnika. Wartość lo- giczna przypisanej zmiennej jest wtedy ustawiana na 1
-(/)-	Przekaźnik o stykach zamkniętych, rozwieranych w momencie dotarcia sygnału do przekaźnika. Wartość logiczna przypisanej zmiennej jest wtedy ustawiana na 0
-(S)-	Przekaźnik o stykach zwieranych w momencie dotar- cia sygnału (wartość logiczna przypisanej zmiennej ustawiana jest wtedy na 1). Styki pozostają zwarte, a wartość zmiennej pozostaje 1 do czasu zadziałania sprzężonego przekaźnika –(R)–
-(R)-	Przekaźnik o stykach rozwieranych w momencie do- tarcia sygnału. Styki pozostają rozwarte, a wartość zmienn ej pozostaje 0 do czasu zadziałania sprzężonego przekaźnika –(S)–
-(↑)-	Przekaźnik uaktywniany zboczem narastającym sy- gnału
-(↓)-	Przekaźnik uaktywniany zboczem opadającym sygna- łu

Styki	Tablica 8
Sym- bol	Opis funkcji
- -	Styk otwarty – przewodzi sygnał, gdy wartość logiczna przypisanej zmiennej jest 1
_ / _	Styk zamknięty – przewodzi sygnał, gdy wartość lo- giczna przypisanej zmiennej jest 0

Liczniki

Tablica 9

Symbol	Opis funkcji
	Licznik zliczający w górę – jego zawartość jest zwięk-
UPCT	szana o 1 za każdym razem, gdy wartość logiczna do-
R	pływającego sygnału zmienia się z 0 na 1. Licznik
	przesyła sygnał wyjściowy, gdy zliczana wartość osią-
	gnie wartość zadaną. Podanie sygnału na wejście ze-
	rujące licznika powoduje wyzerowanie jego zawartości.
	Licznik zliczający w dół (od wartości zadanej). Jego
DNCT	zawartość jest zmniejszana o 1 za każdym razem, gdy
R	wartość logiczna dopływającego sygnału zmienia się z
	0 na 1. Licznik przesyła sygnał wyjściowy, gdy zliczana
	wartość osiągnie zero. Podanie sygnału na wejście ze-
	rujące licznika powoduje ustawienie jego zawartości na
	wartość zadaną.

Przekaźniki czasowe

Tablica 10

Symbol	Opis funkcji
	Przekaźnik czasowy z pamięcią zliczający czas, gdy
ONDTR	dopływa do niego sygnał. Gdy sygnał nie dopływa,
	wartość zliczona jest przechowywana. Przesłanie sy-
	gnału wyjściowego następuje, gdy zliczona wartość
	osiągnie wartość zadaną. Bieżąca zawartość pamięci
	przekaźnika może zostać wyzerowana poprzez prze-
	słanie sygnału na wejście zerujące przekaźnika.
	Przekaźnik czasowy bez pamięci zliczający czas, gdy
TMR	dopływa do niego sygnał. Gdy sygnał przestaje do-
	pływać, wartość zliczona jest zerowana. Przesłanie
	sygnału wyjściowego następuje, gdy zliczona wartość
	osiągnie wartość zadaną.

<u>Menu główne programu narzędziowego</u> Po uruchomieniu programu *CIMPLICITY* wyświetlony zostaje ekran główny programu oraz pojawia się okno wyboru istniejącego (lub rozpoczęcia nowego) programu sterującego (rys. 7). W przypadku wyboru opcji "nowy program" (empty project) ukazuje się okno (rys. 8) z polem do wpisania nazwy nowego programu.

Po wybraniu istniejącego programu lub wpisaniu nazwy nowego i jej zatwierdzeniu ekran programu Cimplicity ma postać jak na rys. 9 z aktywnym oknem *Nawigator* zawierającym drzewo katalogowe realizowanego projektu.

Tworzenie programów sterujących

Ekran programu narzędziowego z rys.9 zawiera paski narzędziowe znajdujące się w górnej jego części. Jeden z pasków narzędziowych (pokazany oddzielnie na rys.10) zawiera ikonę okna Nawigator umożliwiającą zamykanie i otwieranie tego okna. Ten sam pasek narzędziowy zawiera także ikony dwóch innych okien: Biblioteka elementów, Inspektor. Rozpoczęcie edycji programu sterującego wymaga uaktywnienia tych okien (pomocniczych), a także okna podstawowego edycji programu sterującego. Okno edycji programu sterującego otwiera się przez dwukrotne kliknięcie katalogu Main w drzewie katalogowym projektu w oknie Nawigatora. Na rys. 11 pokazano widok ekranu programu CIMPLICITY z oknem edycji programu sterującego (Main) i oknami pomocniczymi Nawigator, pokazanymi oddzielnie na rys. 12 – 13. Trzy okna pomocnicze są rozwijane (lub zwijane) przez wskazywanie odpowiednich ikon w jednym z pasków narzędziowych widocznym na rys. 11 oraz oddzielnie pokazanym na rys. 10.

Okno *Biblioteka elementów* (pokazane oddzielnie na rys.12) zawiera dostępne elementy (funkcje) do tworzenia programu sterującego. Wybrane z nich są przedstawione w tablicach 5 - 10. Niektóre z tych funkcji dostępne są na pasku narzędziowym widocznym na ekranie roboczym przedstawionym na rys. 11, a także pokazanym oddzielnie na rys.14. Ten pasek narzędziowy zawiera także narzędzia, pomocne w konstruowaniu schematów drabinkowych, takie jak: wskaźnik, rysowanie linii poziomych i pionowych, wstawianie nowego szczebla schematu drabinkowego, wpisywanie komentarza.

Okno *Inspektora* (pokazane oddzielnie na rys. 13) służy, między innymi, do wpisywania adresów zmiennych (sygnałów) przypisanych elementom takim jak styki, przekaźniki i bloki funkcyjne.

Konstruowanie schematu drabinkowego polega na przeciąganiu myszką nazwy elementu wybranego z okna *Biblioteka elementów* do okna edycji programu sterującego. W przypadku stosowania elementów dostępnych na pasku narzędziowym należy wybrany element wskazać kursorem, a następnie kliknąć w odpowiednim miejscu ekranu edycji programu sterującego.

Po narysowaniu schematu programu sterującego należy nadać nazwy (dowolne) wszystkim występującym w nim sygnałom. Dwukrotne kliknięcie na styk, przekaźnik lub linię sygnału wejściowego/wyjściowego bloku funkcyjnego powoduje otwarcie okna edycji nazwy sygnału (rys. 15). Nazwę należy wpisać w odpowiednim polu i zatwierdzić.

Następnym etapem jest przypisanie wszystkim sygnałom odpowiednich adresów zgodnych z typem danej zmiennej. Po wskazaniu nazwy sygnału odpowiedni adres wpisuje się w polu *Ref.Address* w oknie *Inspektora* (rys. 11 i 13).

Uruchamianie i testowanie programów sterujących

Poprawnie skonstruowany program sterujący (schemat drabinkowy) może być przesłany do sterownika i uruchomiony. Na rys. 16 pokazano pasek narzędziowy (por. także rys. 11) z poleceniami związanymi z uruchamianiem programu sterującego.

Polecenie online/offline służy do przełączania trybu połączenia pomiędzy sterownikiem i komputerem. Tworzenie programu sterującego (lub jego modyfikacja) powinno odbywać się w trybie offline natomiast przesłanie programu sterującego do sterownika oraz testowanie programu musi być realizowane w trybie online. Tryb online jest sygnalizowany zielonymi znacznikami "przy szynie zasilającej" schematu drabinkowgo.

Przesłanie programu do sterownika (oraz jego uruchomienie) nastąpi wtedy gdy w trybie *online* zostanie wskazana ikona *ladowanie i start programu* (rys. 16). Uruchamiania programu, który znajduje się już w pamięci sterownika dokonuje się przy pomocy polecenia *start programu*. Zatrzymanie wykonywania programu przez sterownik może być dokonane przy pomocy polecenia *stop programu*.

Uruchomiony program sterujący przetwarza sygnały wejściowe (wyjściowe obiektu) na wyjściowe (wejściowe obiektu) zgodnie ze strukturą programu. Działanie programu (zmianę wartości sygnałów w czasie rzeczywistym) można obserwować na ekranie komputera programatora.

Program *CIMPLICITY* umożliwia także przetestowanie skonstruowanego programu bez konieczności podłączania sygnałów z(do) obiektu do(ze) sterownika. Możliwe jest bowiem programowe wymuszanie wartości sygnałów dyskretnych i sprawdzenie czy sygnały wyjściowe przyjmują wartości zgodne założeniami autora programu sterującego.

Programowe wymuszenie wartości sygnału wejściowego (dyskretnego) wykonywane jest przez wskazanie prawym klawiszem myszki danego elementu (rys. 17), a następnie wybranie polecenia *force on* ("1") lub *force off* ("0"). Nazwa sygnału z wymuszoną w ten sposób wartością wyświetlana jest w kolorze czerwonym. Likwidacji wymuszenia wartości sygnału można dokonać przez wybór polecenia *remove force* (rys.17).

CEL I PRZEBIEG ĆWICZENIA

Cel

Zapoznanie się ze sterownikiem programowalnym *GE VersaMax Micro* i programem narzędziowym *Cimplicity*.

Zakres

Uruchamianie sterownika.

Uruchamianie i obsługa programu narzędziowego.

Poznanie zasad tworzenia programu sterującego.

Przesyłanie programu sterującego do sterownika, uruchamianie i testowanie.

Demonstracja połączenia sterownika z obiektem sterowania.

Rys. 1. Schemat ogólny stanowiska laboratoryjnego

Realizacja algorytmu sterowania

Ustawianie wyjść

Rys. 4. Sposób podłączenia wejść i wyjść logicznych

Rys. 5. Sposób przedstawiania styków (a - styk normalnie otwarty, b - styk normalnie zamknięty), przekaźników (c, d) i bloków funkcyjnych (e) w programie narzędziowym *Cimplicity*

Rys. 6. Przykład szczebla drabiny logicznej

CIMPLICITY Machine Edition
Create a new project using
C Empty project
C Machine Edition template
C Open an existing project
projekt3 projekt2
Show: 📀 Recent Projects 🔿 All Projects
🖵 Don't show this dialog box on startup
OK Cancel

Rys.7. Okno wyboru istniejącego (lub rozpoczęcia nowego) programu sterującego

New Project 🔀		
Project Name: Project Template: Empty Toject [Default] Set as default		
Empty Project This template creates a blank project. Using this template requires the most work, but also provides the greatest flexibility. Other templates automatically add various components, targets or drivers to your project, which you may not need in yours.		
Tip: For a description of what a template contains, select it from the Project Template list.		
OK Cancel		

Rys. 8. Okno wpisywania nazwy nowego programu

Rys. 9. Ekran roboczy programu CIMPLICITY z aktywnym oknem Nawigatora

Rys. 10. Pasek narzędziowy okien pomocniczych

Rys. 11. Ekran roboczy programu *Cimplicity* (aktywne okno edycji programu sterującego oraz okna pomocnicze: *Nawigator, Biblioteka elementów, Inspektor*)

Rys. 12. Ekran pomocniczy Biblioteka elementów

	Inspector	×
F	Variable [Target1]	
	Name	x1
	Description	
	Publish	True
	Array Dimension 1	0
	Data Source	GE FANUC PLC
	Ref Address	%100001 +++
	Data Type	BOOL
	Current Value	Off
	Initial Value	Off
	Default Display Format	On / Off
	Retentive	True
	Force State	Not Forced
	General	

Rys. 13. Ekran pomocniczy Inspektor

Rys.14. Pasek narzędziowy z wybranymi funkcjami oraz narzędziami budowy schematów drabinkowych

Rys. 15. Wpisywanie nazwy sygnału

Rys. 16. Pasek narzędziowy z poleceniami do uruchamiania programu sterującego

Rys. 17. Testowanie programu sterujacego